Электромеханическое сопряжение возбуждения и сокращения. Механизм сопряжения возбуждения и сокращения в поперечно-полосатых мышечных волокнах (электромеханическое сокращение)

Электромеханическое сопряжение — это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по схеме рис. 7.11.

Рис. 7.11. Схема электромеханического сопряжения в кардиомиоците (М — клеточная мембрана-сарколемма, СР — саркоплазматический ретикулум, МФ …
— миофибрилла, Z — z-диски, Т — Т-система поперечных трубочек); 1 — поступления Na + и 2 — поступления Са 2+ в клетку при возбуждении мембраны, 3 — "кальциевый залп", 4 — активный транспорт Са 2+ в СР, 5 — выход из клетки К + , вызывающий реполяризацию мембраны, 6 — активный транспорт Са 2+ из клетки

Процесс сокращения кардиомиоцита происходит следующим образом

1 — при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы ионы Na+ входят в клетку, вызывая деполяризацию мембраны

2 — в результате деполяризация плазматической мембраны в ней и в Т-трубочках открываются потенциал-зависимые; медленные кальциевые каналы (время жизни 200 мс), и ионы Са 2+ поступают из внеклеточной среды, где их концентрация ≈ 2 10 -3 моль / л, внутрь клетки (внутриклеточная концентрация Са 2+ ≈ 10 -7 моль / л);

3 — кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са 2+ (в СР их концентрация достигает ≈ 10 -3 моль / л), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый "кальциевый залп". Ионы Са 2+ из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4 — по окончании процесса сокращения миофибрилл ионы Са 2+ с помощью кальциевых насосов, находящихся в мембране СР, активно заканчиваются внутрь саркоплазматического ретикулума;

5 процесс электромеханического сопряжения заканчивается тем, что К + пассивно выходит из клетки, вызывая реполяризацию мембраны;

6 — ионы Са 2+ активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный выше двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки j Ca прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов Са 2+ внутрь клетки выполняет таким образом две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.

Следует отметить, что не во всех мышечных клетках орга­низма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к z-дискам. Изменения мембранного потенциала во время деполяризации через Т-систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов Са 2+ и дальнейшую активацию сокращения (3, 4, 5).

Общим для любых мышечных клеток является процесс освобождения ионов Са 2+ из внутриклеточных депо — саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присутствии ионов Са 2+ белка экворина, который был выделен из светящихся медуз.

Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной - несколько больше (до 100 мс).

Яд кураре, которым пользуются охотники Амазонки, парализует жертву как раз благодаря тому, что молукулы этого яда, попав в кровь проникают к рецепторам ацетилхолина и усаживаются на них, так что когда к этим рецепторам приходит сам ацетилхолин, свободных мест уже нет, и процесс передачи сигнала на мышечные сокращения преравается. Аналогично работает белок ботулин, вызывающий одно из опаснейших пищевых отравлений, ботулизм. А вот вирус полиомелита разрушает те нервные волокна, по которым с помощью кальция подаются сигналы на мышечные сокращения, и мышцы, оставшись без употребления, постепенно высыхают. С другой стороны, этот же «кальциевый привод» можно использовать в благодетельных целях. Так, сердечыные больные нуждаются в понижении ритма биений сердца, в противном случае оно при нагрузках будет требовать больше кислорода, чем способны дать сузившиеся из-за атеросклероза сосуды. Этим людям помогают «β-блокаторы» – препараты, которые несколько блокируют кальциевые каналы, тем самым понижая уровень кальция и, соответственно, уменьшая размах сокращений сердечной мышцы.

Перемещения внутри обычных клеток осуществляют другие моторы, и в отличие от миозина их изучение началось в 1985 году, когда Том Рииз и Майкл Шитц открыли первый из них – кинезин. Молекула кинезина по своей форме напоминает молекулу миозина – те же округлые головки на длиной ножке. Двумя головками молекула хватается за поверхность микротрубочки, а к торчащей вверх ножке крепится пузырек с химическими веществами. Под воздействием АТФ молекула изгибается, так что ее передняя головка уходит чуть дальше от задней и в результате хватается за микротрубочку чуть дальше по ходу движения; затем задняя головка вновь подтягивается к передней. Затем этот «силовой толчек» повторяется. В итоге пузырек, сидящий на ножке молекулы, рывками движется по микротрубке. Картина напоминает ползущую по ветке гусеницу. Кинезин способен переносить пузырьки с необходимыми клетке химическими веществами только в одном направлении – от центра клетки к ее переферии, а динеин движется в обратном направлении Микротрубки имеют встроеные в них однонаправленные блочные конструкции (с «головой» и «хвостом»). Пока непонятно, как пузырьки узнают, в какую сторону им двигаться. В 1990 году Ричард Велли открыл еще один вид молекулярного мотора — «динамин». В настоящее время считается, что в клетках действует не менее полусотни переносящих или передвигающих груз молекул работающих по отному принципу – преобразование химической энергии в энергию изменения формы гибкой молекулы, которая за счет этого изменения способна «хватать и перехватывать» некое длинное негибкое внутриклеточное волокно и «ползти» по нему с грузом. Кроме того, молекула динеина соединяется с энергетической молекулой АТФ, происходит нечто вроде натягивания лука – центр динеиновой молекулы выходит вперед, а угол между ее концами уменьшается (как сближаются концы лука). Затем, после выполненной работы, молекула динеина как бы «распрямляется» – происходит «силовой толчок» и один конец смещается относительно другого на 15 нм. Такой механизм был расскрыт под руководством С. Берджесса в 2003 году группой ученых

Молекулы осуществляющие функцию движения в нашем теле (а- кинезин, б- динеин, в- миозин). Б) «Молекулярный мотор» кинезина, при помощи которого молекула переносит по микротрубочкам различные вещества.

Потребности работающей мышцы в АТФ удовлетворяются за счет следующих ферментативных реакций:

1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счет переноса фосфатной группы креатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой . Однако и этот мышечный резерв «высокоэргического фосфата» расходуется в течение нескольких секунд. В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-N-метилглицина). Креатин, который синтезируется в печени, поджелудочной железе и почках, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счет неферментативной реакции с образованием креатинина, который поступает в почки и удаляется из организма.

2 Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген. В покоящейся ткани содержание гликогена составляет до 2% от мышечной массы. При деградации под действием фосфорилазы гликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счет анаэробного гликолиза восстанавливается в молочную кислоту (лактат), которая диффундирует в кровь.

3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где подвергается окислению. Окислительное фосфорилирование — наиболее эффективный и постоянно действующий путь синтеза АТФ. Однако этот путь реализуется при условии хорошего снабжения мышц кислородом. Наряду с глюкозой, образующейся при расщеплении мышечного гликогена, для синтеза АТФ используются и другие "энергоносители", присутствующие в крови: глюкоза крови, жирные кислоты и кетоновые тела.

4. Образование инозинмонофосфата [ИМФ (IMP)]. Другим источником быстрого восстановления уровня АТФ является конверсия АДФ в АТФ и АМФ (AMP), катализируемая аденилаткиназой (миокиназой). Образовавшийся АМФ за счет дезаминирования частично превращается в ИМФ (инозинмонофосфат), что сдвигает реакцию в нужном направлении.

Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование. За счет этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда - это следствие перебоев в поступлении кислорода).

В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин (Mb) — близкий гемоглобину белок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишенных красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз. Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идет с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения рН в мышечных клетках.

Расщепление гликогена контролируется гормонами. Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счет образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличении концентрации ионов Са 2+ во время мышечного сокращения.

Электромеханическое сопряжение – то цикл последовательных процессов, который начинается с возникновения потенциала действия на сарколемме и заканчивается сократительным ответом мышцы.

Общепринятой моделью мышечного сокращения является модель скользящих нитей, согласно которой сократительный процесс происходит следующим образом.

Под действием нервного импульса в сарколемме открываются натриевые каналы, и ионы Na + входят в мышечную клетку, вызывая возбуждение (деполяризацию) сарколеммы.

Электрохимически процесс возбуждения передается на саркоплазматической ретикулум. В результате повышается проницаемость этой мембранной структуры для ионов Са ++ и происходит их выброс в цитоплазматическую жидкость (саркоплазму), заполняющую мышечное волокно. Повышение концентрации Са ++ с 10 –7 до 10 –5 моль/л стимулирует циклическую работу миозиновых «мостиков». «Мостик» связывается с актином и тянет его к центру А -зоны, в область расположения миозиновых нитей, перемещая на расстояние 10–12 нм. Затем он отщепляется от актина, связывается с ним в другой точке и опять подтягивает в нужную сторону. Непрерывное движение актиновных нитей происходит в результате поочередной работы «мостиков». Частота циклов их движений, по-видимому, регулируется в зависимости от нагрузки на мышцу и может достигать 1000 Гц. «Мостики» обладают АТФ-азной активностью, стимулируют расщепление АТФ и используют высвобождающуюся при этом энергию для своей работы.

Возвращение мышцы к исходному состоянию обусловлено обратными переходами ионов Са ++ из саркоплазмы в ретикулум вследствие работы кальциевых насосов и тем, что К + пассивно выходит из мышечной клетки, вызывая реполяризацию саркоплемы.

Механическое усилие, развиваемое мышцей при сокращении, зависит от величины еë поперечного сечения, от начальной длины волокон и ряда других факторов. Сила мышцы, приходящаяся на 1 см 2 её поперечного сечения, называется абсолютной мышечной силой. Для человека она изменяется в пределах 50–100 . Сила одних и тех же мышц человека зависит от ряда физиологических условий: возраста, пола, тренированности и т. д. Следует также отметить. Что в разных мышечных клетках организма процесс сопряжения происходит несколько по-разному. Например, задержка начала сокращения по отношению к началу возбуждения сарколеммы в скелетных мышцах составляет 20 мс, в сердечной – несколько больше (до 100 мс).


* Если молекула или часть молекулы имеют неравный нулю дипольный момент или электрический заряд, то их называют полярными

Роль Са 2+ - ионов.

Обычно мышца возбуждается при поступлении нервных импульсов от аксонов мотонейронов в пресинаптическую часть нервного волокна. Через 1-2 мс в мышечном волокне со скоростью примерно 2м/сек булл распространяться потенцией действия, а через 5-10 мс возникает сокращение этого волокна.

Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине мышечной клетки называемся электромеханическим сопряжением. Оно происходит в несколько этапов, с участием белков тропонииа и тропомиозина, а также ионов Са 2+ и состоит из нескольких этапов:

1. Распространение возбуждения вглубь волокна. В этом процессе важную роль играют Nа + - каналы поперечных трубочек (Т - трубки). С их помощью возбуждение быстро распространяется но мембране саркоплазматического ретикулума - систему продольных трубочек (т.н. «триады»), в которых депонирован Са 2+ . В мембране триад располагаются потенциал управляемые Са 2+ - каналы, которые открываются при распространении деполяризации, называют потенциалом действия.

2. Са 2+ - ионы поступают к миофибриллам. В состоянии покоя между поперечными мостиками миозина и актиновыми нитями находится длинный белок – тропомиозин. На актиновых же нитях через каждые 40 нм расположен белок сферической формы - тропонин. При поступлении ионов Са 2+ тропонин приобретает округлую форму и «заталкивает» тропонин в желобок между актииовыми нитями. Открываются участки для прикрепления поперечных миозиновых мостиков к нитям актина. При помощиАТФ происходит процесс «гребка».

3. После окончания «гребка» с помощью кальциевого насоса ноны Са 2+ удаляются в саркоплазматический ретикулум. При снижении концентрации Са 2+ подавляется активность АТФ-азы миозина и количество АТФ в миофибриллах увеличивается.

4. АТФ: даёт энергию для разъединения нитей актина и миозина после «гребка» - мышца расслабляется.

Недостатком АТФ объясняется трудное окоченение – нити актина и миозина не разъединены.

Таким образом, ведунью роль в электромеханическом сопряжении играют ионы Са 2+ .

3.Нейромоторные (двигательные) единицы, их виды.

Нейромоторная единица - это совокупность одного мотонейрона, аксона мотонейрона и его разветвлений, а также мышечных волокон, которые иннервируют данный аксон (рис. 15). В зависимости от количества иннервируемых волокон нейромоторные единицы делятся на две группы:

1. Малые нейронные единицы - один мотонейрон иннервирует несколько мышечных волокон. Иннервируется мышцы, требующие тонких и точных движений (мышцы глаза, гортани, пальцев рук).

2. Большие нейромоторные единицы - один мотонейрон иннервирует несколько сотен мышечных волокон (мышцы спины,голени).

Рис.15 . Строение двигательной единицы.

В зависимости от характера сокращения нейромоторные единицы делятся на три группы.

Электромеханическое сопряжение - это цикл последователь­ных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по рис. 11.

Процесс сокращения кардиомиоцита происходит следующим образом:

1- при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы входят в клетку, вызывая деполяризацию мембраны.

2- в результате деполяризация плазматической мембраны в ней и в Т –трубочках открываются потенциал- зависимые кальциевые каналы (время жизни 200 мс), и ионы поступают из внеклеточной среды, где их концентрация = , внутрь клетки (внутриклеточная концентрация );

3- кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов (в СР их концентрация достигает ), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый «кальцевый залп». Ионы из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4- по окончании процесса сокращения миофибрилл ионы с помощью кальциевых насосов, находящихся в мембране СР, активно закачиваются внутрь саркоплазматического ретикулума;

5 – процесс электромеханического сопряжения заканчивается тем, что К пассивно выходит из клетки, вызывая деполяризацию мембраны:

6 – ионы активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы;

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: в начале небольшой входящий поток кальция активирует мембраны СР, способствуя большому выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов внутрь клетки выполняет таким образом две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.



Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т- система поперечных трубочек, подходящих непосредственно к саркомерам, близко к z – дискам (рис. 11). Изменения мембранного потенциала во время деполяризации через Т – систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов и дальнейшую активацию сокращения (3,4,5). Временной ход этих процессов показан на рис.12.

Рис. 12. Временное соотношение между потенциалом действия кардиомиоцита (а) и одиночным сокращением (б) в этих клетках. Ордината слева – мембранный потенциал, справа – сила, - потенциал покоя.

Общим для любых мышечных клеток является процесс освобождения ионов и внутриклеточных депо саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присутствии ионов белка экворина, который был выведен из светящихся медуз.

Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной – несколько больше (до 100 мс)

Электромиография - метод электрофизиологической диагностики поражений нервно-мышечной системы, состоящий в регистрации электрической активности (биопотенциалов) скелетных мышц.

Различают спонтанную электромиограмму, отражающую состояние мышц в покое или при мышечном напряжении (произвольном или синергическом), а также вызванную, обусловленную электрической стимуляцией мышцы или нерва.

Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков . Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках (см. " Проведение возбуждения между клетками ". Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности ( рис. 30.14). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+, которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

В состоянии покоя в мышечном волокне концентрация свободного ионизированного Са2+ в цитоплазме вокруг толстых и тонких филаментов очень низка, около одной десятимиллионной доли моля/л. При такой низкой концентрации ионы Са2+ занимают очень небольшое количество участков связывания на молекулах тропонина, поэтому тропомиозин блокирует активность поперечных мостиков . После потенциала действия концентрация ионов Са2+ в цитоплазме быстро возрастает, и они связываются с тропонином , устраняя блокирующий эффект тропомиозина и инициируя цикл поперечных мостиков. Источником поступления Са2+ в цитоплазму является саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие "рваного рукава", сегментами которого окружены A-диски и I-диски ( рис. 30.15). Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн , соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са2+; после возбуждения плазматической мембраны он высвобождается.

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков , проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином , т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу - интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам ; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление ( рис. 30.16). Источником энергии для кальциевого насоса служит АТФ - это одна из трех его главных функций в мышечном сокращении (